

Polimi LCA network: chi siamo

- Un nuovo network al Polimi composto da ricercatori e professori che applicano la metodologia Life Cycle Assessment (LCA) in diversi ambiti, nato su iniziativa del gruppo di ricerca AWARE (Assessment on WAste and REsources) del DICA
- La LCA è ampiamente accettata come uno strumento chiave di supporto alle decisioni per l'attuazione di interventi e politiche che portano allo sviluppo sostenibile, sia a livello ambientale che sociale ed economico
- Il network è composto da 16 gruppi di ricerca appartenenti a 8 Dipartimenti del Polimi (DABC, DCMC, DDESIGN, DEIB, DICA, DENG, DIG e DMEC)

Polimi LCA network: chi siamo

Coordinamento: Prof.ssa Lucia Rigamonti; Segreteria: dott.ssa Camilla Tua, dott.ssa Giulia Cavenago

Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito (DABC)

LifeCycleTEAM (Prof.ssa Monica Lavagna)

SEED [Lab] (Francesco Pittau)

LCA for Sustainable Food Systems and Events (Prof.ssa Paola Caputo) (+ DIG)

Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" (DCMC)

ChiPLab (Prof.ssa Marinella Levi)

Making Materials (Prof.ssa Barbara Del Curto)

Mat4En2 (Prof. Giovanni Dotelli, Prof.ssa Paola Gallo Stampino)

Dipartimento di Design (DESIGN)

LeNSlab (Prof. Carlo Vezzoli)

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Ecology Group (Prof. Paco Melià)

Dipartimento di Energia (DENG)

BEES (Jacopo Famiglietti)

GECOS (Prof. Davide Bonalumi)

SESAM (Prof. Matteo Vincenzo Rocco)

Dipartimento di Ingegneria Gestionale (DIG)

SoM Manufacturing Group (Elisa Amodeo)

Dipartimento di Ingegneria Civile e Ambientale (DICA)

AWARE (Prof.ssa Lucia Rigamonti, Prof. Mario Grosso)

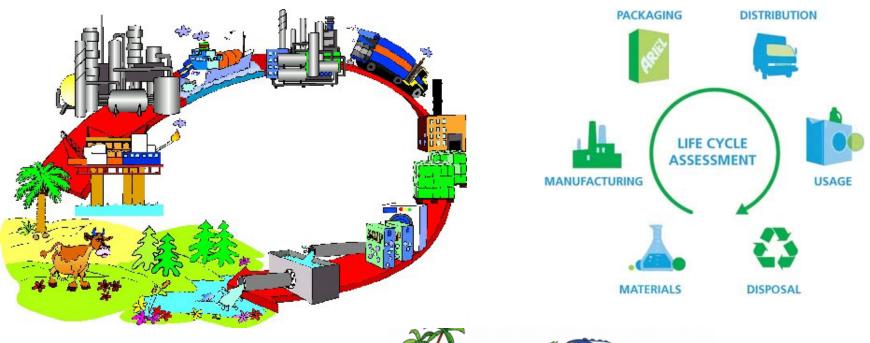
Fabio Biondini's Research Group (Prof. Fabio Biondini)

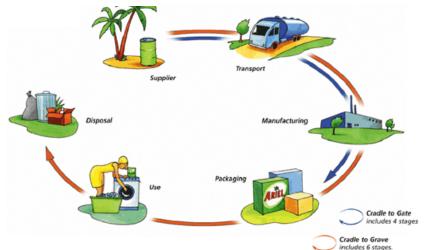
Liberato Ferrara's Research Group (Laura Corti)

Dipartimento di Ingegneria Meccanica (DMEC)

Mario Guagliano's Research Group (Prof. Mario Guagliano)

Polimi LCA network: obiettivi principali


6 Gruppi di lavoro:


- Giovani ricercatori
- Comunicazione, Social & Networking
- Formazione LCA base
- Formazione LCA avanzata
- Supporto strategico all'Ateneo
- LCA Tech&Tools

Per saperne di più:

- Webinar di Allineamento Strategico sui Temi di Sostenibilità organizzato dalla Task Force Sostenibilità il 9/7/2025: <u>link registrazione</u> - <u>link</u> slide
- Materiale presentato durante l'evento di lancio dell'iniziativa il 13/11/2024 presso l'Aula Magna https://www.eventi.polimi.it/events/polimi-lcanetwork/

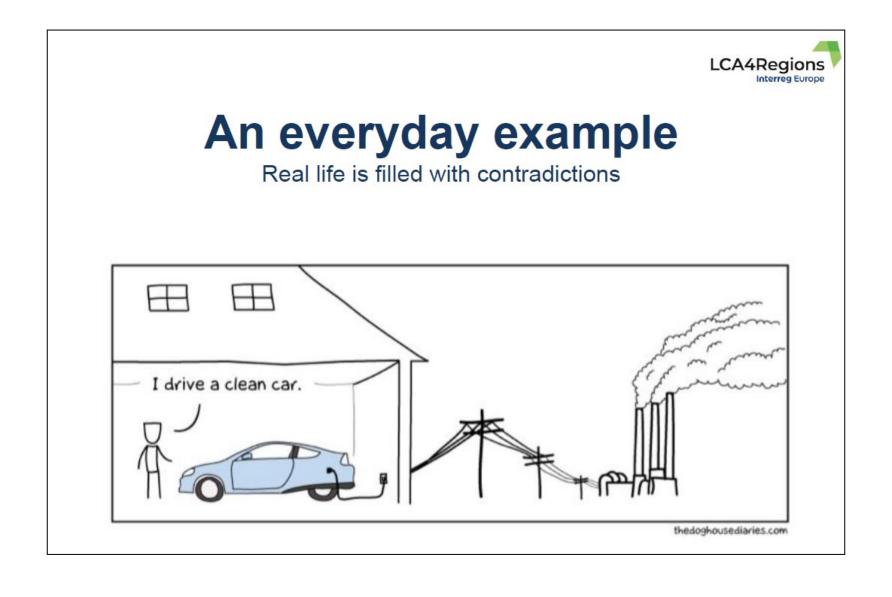
Life Cycle Assessment (LCA) e Life Cycle Thinking (LCT)

Life Cycle Assessment e Life Cycle Thinking

LIFE CYCLE THINKING (LCT):

è il concetto di ampliare il focus che tradizionalmente è sul sito produttivo e sui processi di produzione per includere tutte le attività comprese nell'intero ciclo di vita del prodotto, cioè, dall'estrazione delle risorse, attraverso la fabbricazione e l'uso del prodotto, fino al trattamento finale del prodotto smaltito

LIFE CYCLE ASSESSMENT (LCA):


è una metodologia per valutare i potenziali impatti ambientali e le risorse utilizzate durante tutto il ciclo di vita di un prodotto

Life Cycle Assessment e Life Cycle Thinking: perché?

Il principale scopo del Life Cycle Thinking (e dell'LCA) è evitare il cosiddetto BURDEN SHIFTING ossia lo spostamento degli impatti

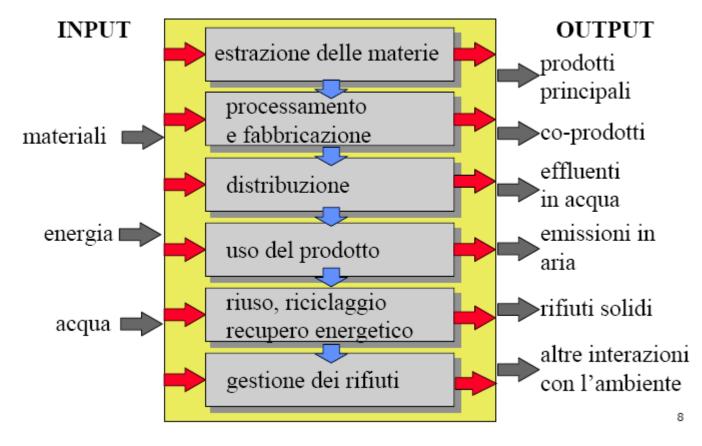
da una fase all'altra del ciclo di vita da un problema ambientale ad un altro da un'area geografica ad un'altra

Life Cycle Assessment e Life Cycle Thinking: perché?

LCA: definizione e aspetto innovativo

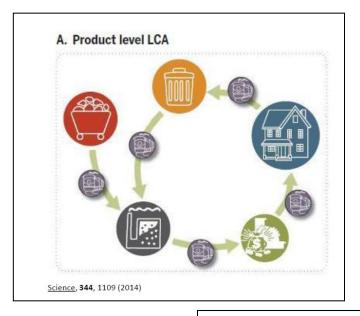
La LCA valuta gli aspetti ambientali e i potenziali impatti ambientali relativi ad un processo o un'attività ("product system"): la valutazione include l'intero ciclo di vita del processo o attività, comprendendo l'estrazione e il trattamento delle materie prime, la fabbricazione, il trasporto, la distribuzione, l'uso, il riciclo e lo smaltimento finale (ISO 14040)

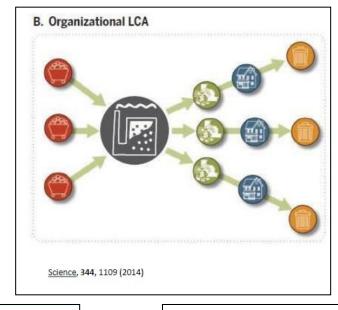
VISIONE GLOBALE DEL SISTEMA PRODUTTIVO

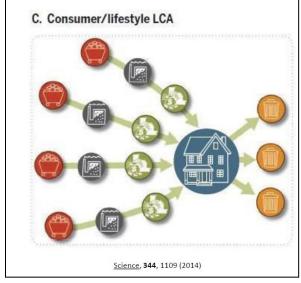


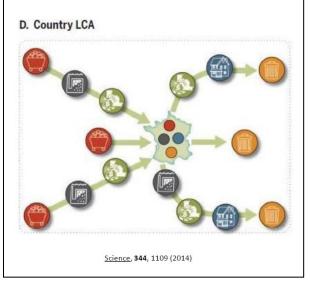
DALLA CULLA ALLA TOMBA
DALLA CULLA ALLA CULLA

SI SEGUE PASSO PER PASSO IL CAMMINO DELLE MATERIE PRIME


LCA: definizione e aspetto innovativo


SI INCLUDE L'INTERO CICLO DI VITA DEL PRODOTTO




Fonte figura: Enea

Applicazioni LCA

LCA: standard ISO

- ISO 14040 (2006 + Amd 1: 2020), Environmental management -- Life cycle assessment -- Principles and framework
- ISO 14044 (2006 + Amd 1: 2017 + Amd 2: 2020), Environmental management -- Life cycle assessment -- Requirements and guidelines
- ISO/TR 14047 (2012), Environmental management -- Life cycle impact assessment -- Illustrative examples on how to apply ISO 14044 to impact assessment situations
- ISO/TR 14049 (2012), Environmental management -- Life cycle assessment -- Illustrative examples on how to apply ISO 14044 to goal and scope definition and inventory analysis

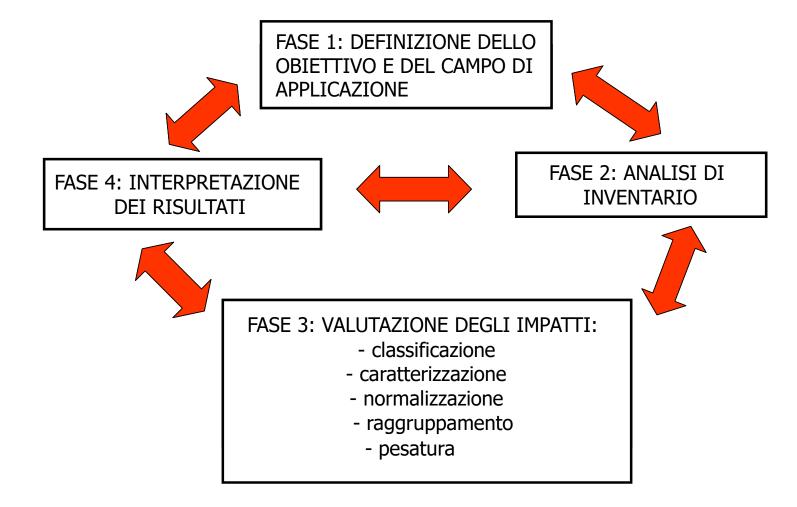
Standardizzazione a livello europeo

Brussels, 16.12.2021 C(2021) 9332 final

COMMISSION RECOMMENDATION

of 16.12.2021

on the use of the Environmental Footprint methods to measure and communicate the life cycle environmental performance of products and organisations


2. DEFINITIONS

For the purposes of this Recommendation, the following definitions apply:

- (a) Product Environmental Footprint (hereinafter 'PEF') method: general method to measure and communicate the potential life cycle environmental impact of a product as laid down in Annex I.
- (b) Organisation Environmental Footprint (hereinafter 'OEF') method: general method to measure and communicate the potential life cycle environmental impact of an organisation as laid down in Annex III.

LCA: la struttura

N.B.: Le 4 fasi non vanno considerate come blocchi separati, ma parte di un processo iterativo

LCA: la struttura

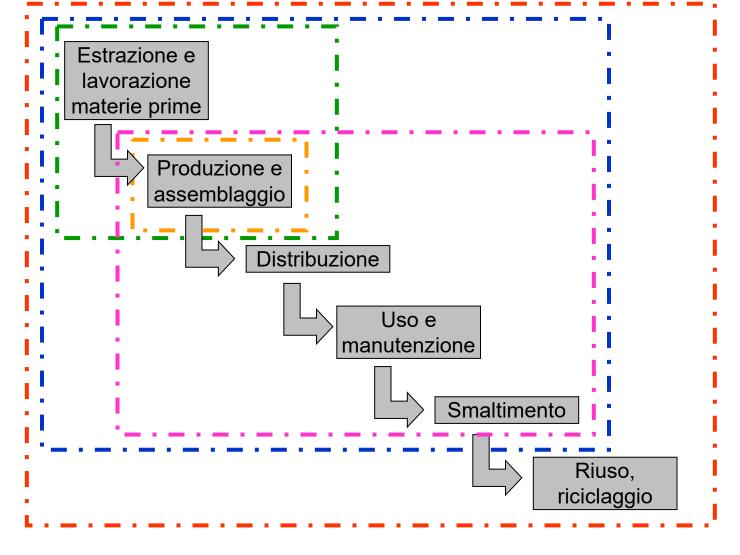
N.B.: Le 4 fasi non vanno considerate come blocchi separati, ma parte di un processo iterativo

Fase 1: definizione dell'obiettivo e del campo di applicazione

* OBIETTIVO DELLO STUDIO: COSA, PERCHÉ, PER CHI (a chi verranno mostrati i risultati)

- * CAMPO DI APPLICAZIONE:
- sistema da studiare
- funzioni del sistema
- unità funzionale
- confini del sistema
- procedure di allocazione
- categorie di impatto, indicatori e modelli di caratterizzazione
- modalità di interpretazione
- dati necessari
- ipotesi
- limitazioni
- qualità dei dati
- tipo di riesame critico
- tipo e formato del rapporto richiesto per lo studio

Fase 1: definizione del campo di applicazione - confini del sistema


DEFINIZIONE DEI CONFINI DEL SISTEMA: <u>si decide quali processi unitari</u> <u>vengono inclusi nell'analisi</u>, a seconda delle finalità dello studio

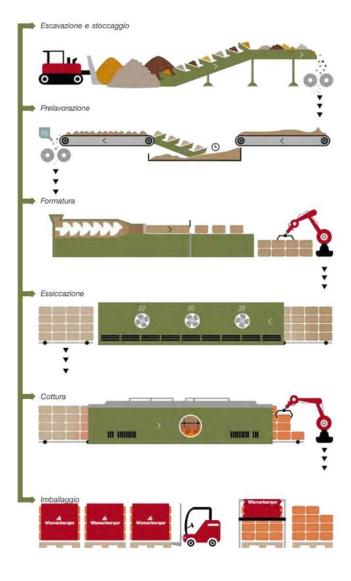
N.B.: sistema = ma confini ≠
(ad es. dalla culla alla tomba o
dall'ingresso dello
stabilimento alla tomba o dalla
culla all'uscita dallo
stabilimento) darà risultati ≠

- la scelta di non considerare qualche processo/input/output deve essere ben esplicitata, così come devono esserne chiarite le ragioni e le implicazioni
- inoltre il sistema deve essere descritto con sufficienti dettagli e chiarezza di modo che un altro utente possa duplicare l'analisi di inventario

Fase 1: definizione del campo di applicazione - confini del sistema

Diversi confini del sistema studiato:

from gate to gate (nei cancelli dell'azienda)


from cradle to gate (dalla culla all'uscita dell'azienda)

from gate to grave (dall'azienda alla tomba)

from cradle to grave (dalla culla alla tomba)

from cradle to cradle (dalla culla alla culla)

Fase 1: definizione del campo di applicazione - confini del sistema

Produzione di laterizi:

confini del sistema?

Fase 1: definizione del campo di applicazione - unità funzionale

Un sistema può avere più di una **funzione**: ne si sceglie una (o più) a seconda dell'obiettivo e del campo di applicazione dell'LCA

UNITA' FUNZIONALE: "prestazione quantificata del sistema di prodotto da utilizzare come unità di riferimento":

- indice delle prestazioni svolte dal sistema (quantifica la funzione del sistema considerata come principale)
- unità di misura di riferimento a cui legare gli elementi in ingresso e in uscita

!!! Il confronto tra diversi sistemi deve essere svolto sulla base della stessa funzione, quantificata dalla stessa unità funzionale !!!

Fase 1: definizione del campo di applicazione - unità funzionale

Esempio:

Funzione: asciugare le mani

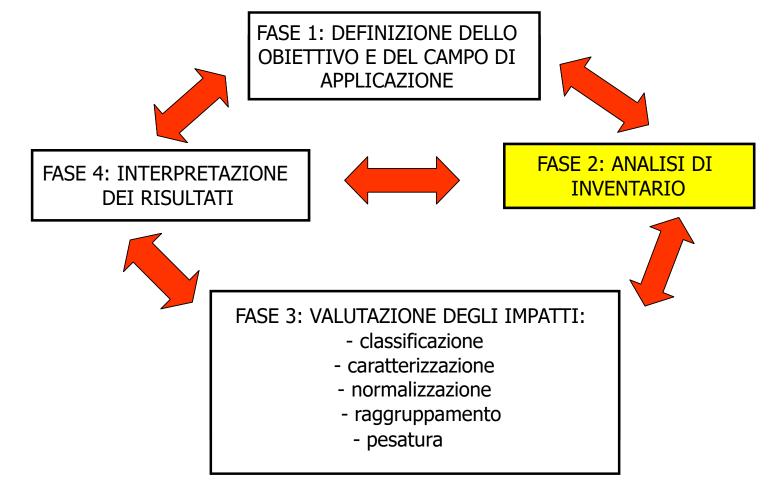
Due sistemi: salvietta di carta e sistema ad aria

Unità funzionale (per entrambi i sistemi): ????

Flusso di riferimento: ????

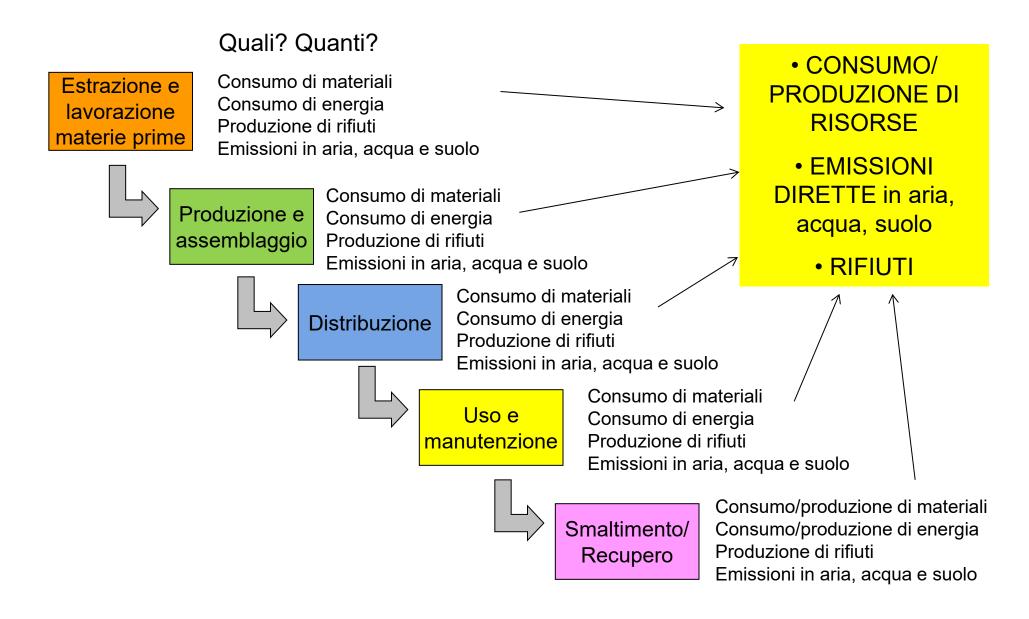
Fase 1: definizione del campo di applicazione - unità funzionale

Se la funzione del prodotto nella fase di utilizzo è sconosciuta, se il prodotto può essere utilizzato per diverse funzioni o se la funzione non può essere definita chiaramente, è possibile utilizzare **un'unità dichiarata** (invece di un'unità funzionale)

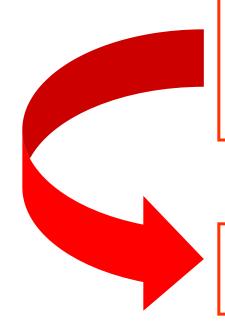

L'unità dichiarata è definita come la quantità di un prodotto

Esempi:

- Una unità, es. 1 computer
- Massa di prodotto, es.1 kg di cemento
- Volume di prodotto, es. 1 litro di acqua


!!! L'uso di un'unità dichiarata riduce la comparabilità tra gli studi !!!
Per aumentare la comparabilità tra studi basati su un'unità dichiarata, è importante specificare le proprietà tecniche rilevanti per l'applicazione / uso del prodotto

LCA: la struttura



N.B.: Le 4 fasi non vanno considerate come blocchi separati, ma parte di un processo iterativo

Fase 2: analisi di inventario (LCI)

Fase 2: analisi di inventario

BILANCIO AMBIENTALE (riferito all'unità funzionale):

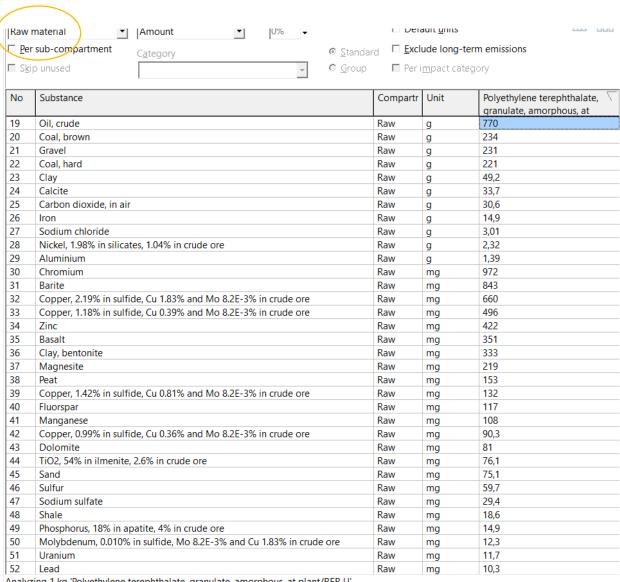
- CONSUMO/PRODUZIONE DI RISORSE
- EMISSIONI in aria, acqua, suolo
- produzione di RIFIUTI

TABELLA DI INVENTARIO:

FLUSSI ELEMENTARI

tutti i flussi non elementari verranno modellizzati fino al livello di flussi elementari

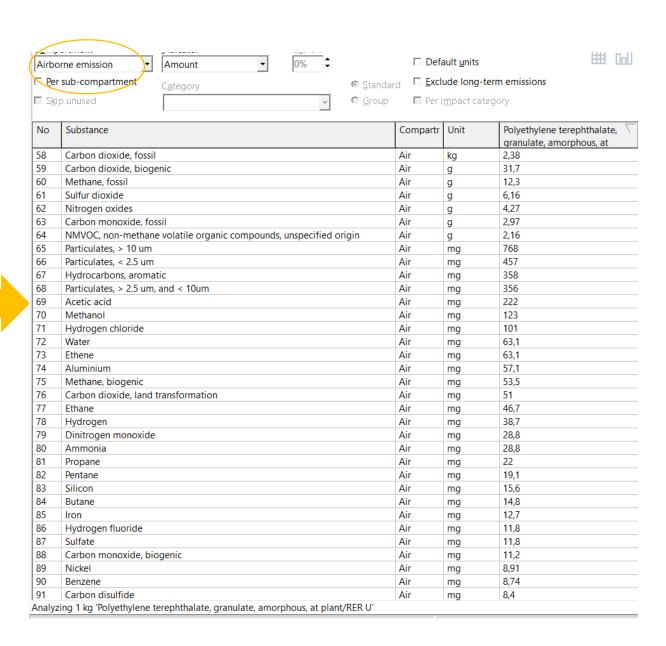
Flusso elementare: materiale o energia che entra nel sistema sotto studio e che è stato estratto dall'ambiente <u>senza</u> precedente trasformazione umana, o materiale o energia che lascia il sistema studiato e che viene rilasciato nell'ambiente senza successiva trasformazione umana


1 kg PET

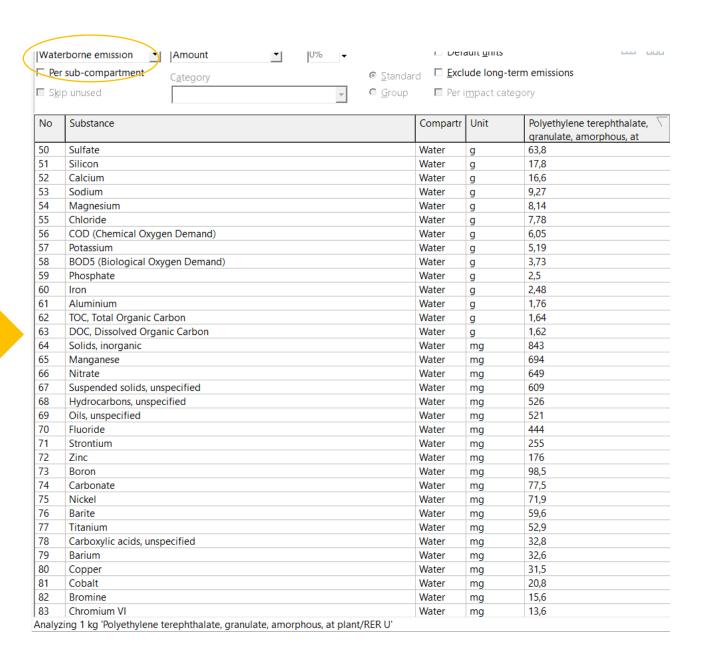
LCA database: ecoinvent dataset Polyethylene terephthalate, granulate, amorphous, at plant/RER U

6 Professional; BeviMI - [View material p 6 <u>File Edit C</u> alculate <u>T</u> ools <u>W</u> ind		anulate, amorphous, at plant/RER U']											-	
Documentation Input/or	Parameters	System description												
		Proc	ducts											
Outputs to technosphere: Produ	icts and co-products			Amount			Unit	Quantity		Allocation	% Waste type		Category Comment	
Polyethylene terephthalate, granulate, amorphous, at plant/RER U			1		kg	Mass		100 % PET			\Thermc Europe			
Outputs to technosphere: Avoid	ded products				Amo	ount		Unit	D	istribution	SD2 or 2SD Min	Ma	ax Comment	
		Inp	outs											
Inputs from nature	Sub-compa Amount		Unit	Distribution	SD2 or 2SD	Min	Max	Comm	nent					
Water, unspecified natural orig	in/m3 in water 0,00016	3	m3	Lognormal	1,2						rage value, based	on		
Water, cooling, unspecified nat	ural orig in water 0,0064		m3	Lognormal	1.2				trial surve	-	rage value, based	20		
water, cooling, unspecified har	urai origi ili water 0,0004		III3	Lognomiai	1,2				rial surve		rage value, based	JII		
										,				
Inputs from technosphere: mate	erials/fuels		Amount						Unit	Distributi	on SD2 Mi	Comment		
Purified terephthalic acid, at pl	ant/RER U		0,875						kg	Lognorm	al 1,2	(2,3,1,1,1,5	i); european average value, based on industrial survey	У
Ethylene glycol, at plant/RER U			0,334						kg	Lognorm	al 1,2	(2,3,1,1,1,5	5); european average value, based on industrial survey	у
Nitrogen, liquid, at plant/RER U	J		0,0298						kg	Lognorm	al 1,2	(2,3,1,1,1,5	5); european average value, based on industrial survey	у
Electricity, medium voltage, pr	oduction UCTE, at grid/UCTE (J	0,194						kWh	Lognorm	al 1,2	(2,3,1,1,1,5	5); european average value, based on industrial survey	у
Heat, heavy fuel oil, at industria	al furnace 1MW/RER U		0,494						MJ	Lognorm	al 1,6	(2,3,1,1,4,5	s); amount industrial survey - distribution according to	o cumulat
Heat, light fuel oil, at industrial	furnace 1MW/RER U		0,165						MJ	Lognorm	al 1,6	(2,3,1,1,4,5	5); amount industrial survey - distribution according to	o cumulat
Heat, natural gas, at industrial	furnace >100kW/RER U		0,665						MJ	Lognorm	al 1,6	(2,3,1,1,4,5	i); amount industrial survey - distribution according to	o cumulat
Heat, at hard coal industrial fur	nace 1-10MW/RER U		0,306						MJ	Lognorm	al 1,6	(2,3,1,1,4,5	i); amount industrial survey - distribution according to	o cumulat
Steam, for chemical processes,	at plant/RER U		0,94						kg	Lognorm	al 1,2	(2,3,1,1,1,5	s); european average value, based on industrial surve	у
Transport, lorry >16t, fleet aver	age/RER U		0,124						tkm	Lognorm	al 2,1	(4,5,na,na,	na,na); standard distances	
Transport, freight, rail/RER U			0,743						tkm	Lognorm	al 2,1	(4,5,na,na,	na,na); standard distances	
Chemical plant, organics/RER/	U		0,000000	0004					р	Lognorm	al 3,1	(4,na,na,na	a,na,na); estimation	
Inputs from technosphere: elec	tricity/heat	Amount			Unit	Distri	I SD2 or Min	Max	Comme	ent				
		2 .												
		Out	puts											
Emissions to air	Sub-compartment	Amount		Unit	Distrib	ution	SD2 or 2	SD Min	N	⁄/ax	Comment			
Heat, waste	high. pop.	0,7		MJ	Logno	rmal	1,2				(2,3,1,1,1,5); caclu	ated form e	electricity input iva Windows	
Particulates, > 10 um	high, pop.	0.00000032		kg	Logno		1,6						e value, based on Impostazioni per attivare Window	

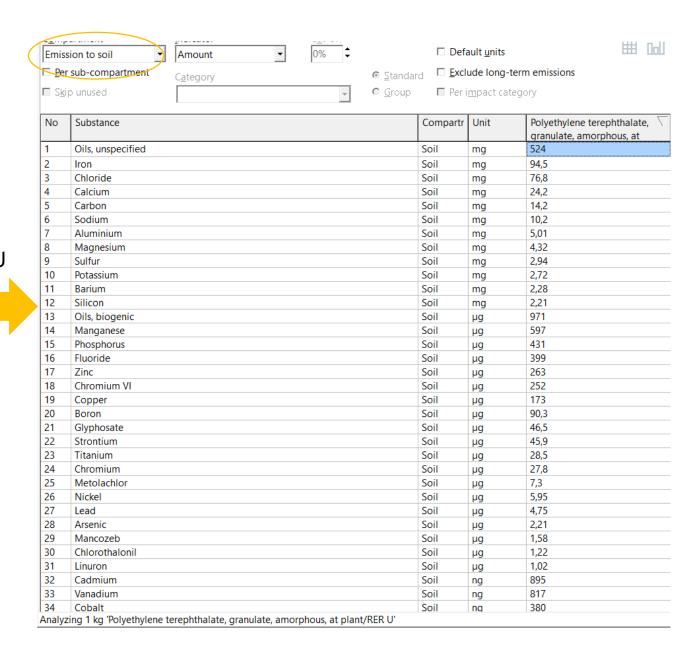
LCA database: ecoinvent dataset Polyethylene terephthalate, granulate, amorphous, at plant/RER U


1 kg PET

Analyzing 1 kg 'Polyethylene terephthalate, granulate, amorphous, at plant/RER U'

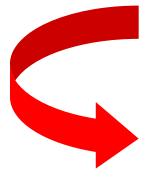

LCA database: ecoinvent dataset Polyethylene terephthalate, granulate, amorphous, at plant/RER U

1 kg PET

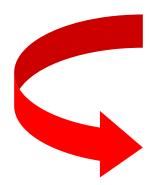

LCA database: ecoinvent dataset Polyethylene terephthalate, granulate, amorphous, at plant/RER U

1 kg PET

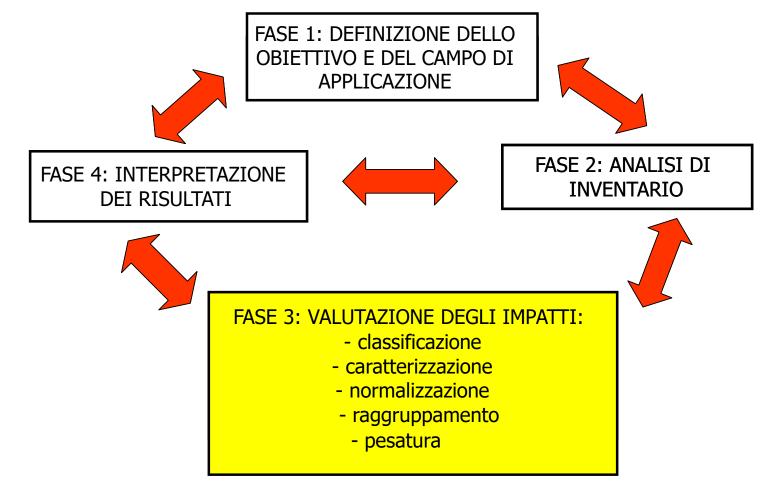
LCA database: ecoinvent dataset Polyethylene terephthalate, granulate, amorphous, at plant/RER U


1 kg PET

Fase 2: analisi di inventario


BILANCIO AMBIENTALE:

- CONSUMO/PRODUZIONE DI RISORSE
- EMISSIONI DIRETTE in aria, acqua, suolo
- produzione di RIFIUTI


TABELLA DI INVENTARIO:

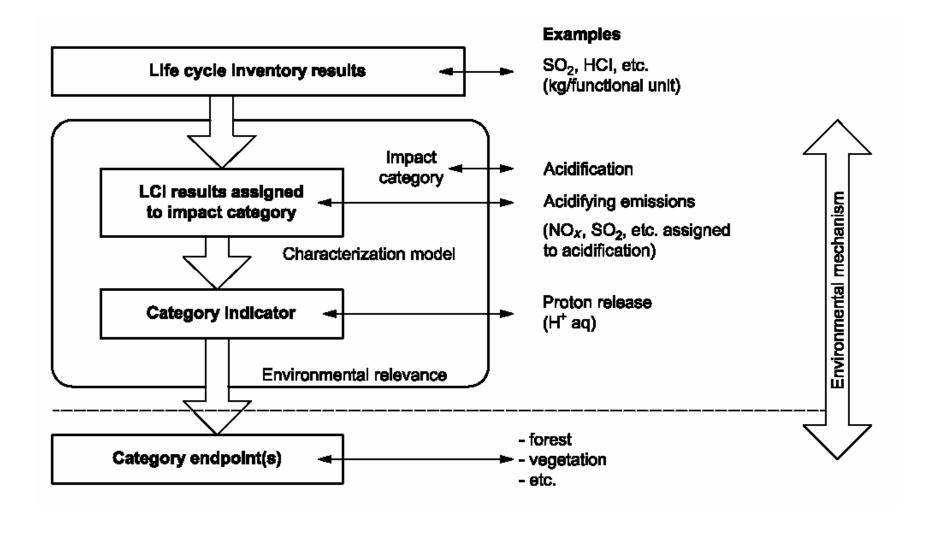
• FLUSSI ELEMENTARI

CALCOLO DEI POTENZIALI IMPATTI AMBIENTALI

LCA: la struttura

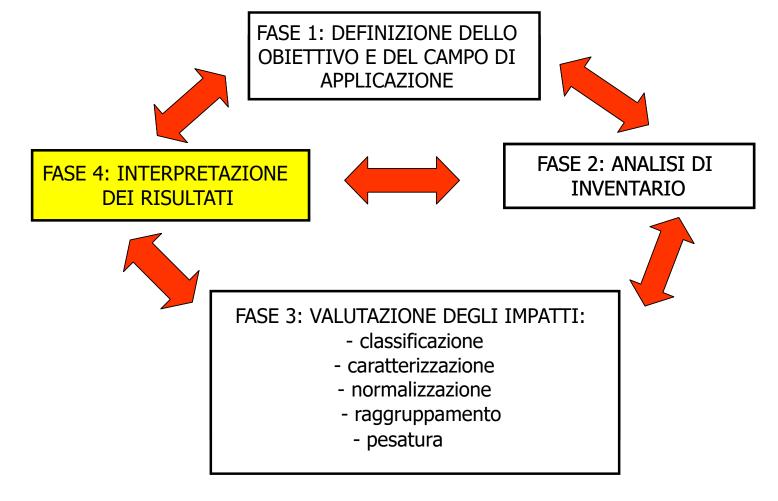
N.B.: Le 4 fasi non vanno considerate come blocchi separati, ma parte di un processo iterativo

Fase 3: valutazione degli impatti (LCIA)

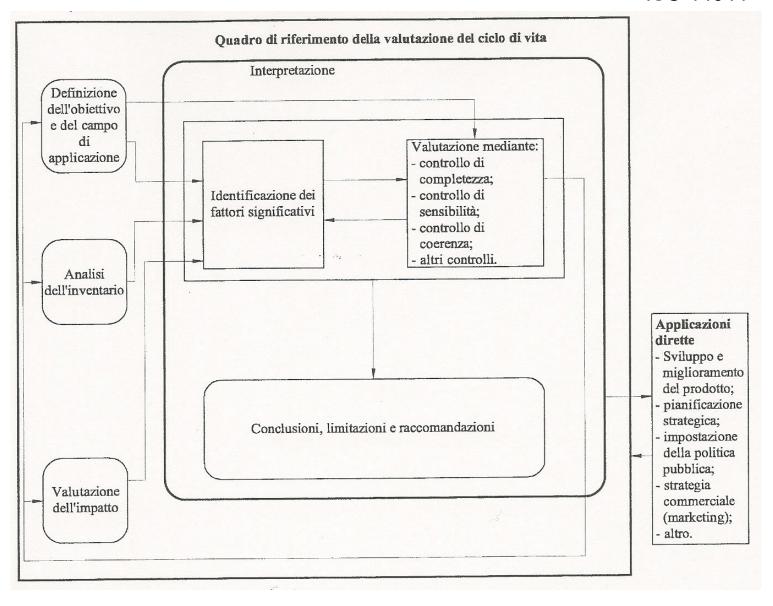

STUDIO DELL' <u>IMPATTO</u> AMBIENTALE:

collegare i risultati dell'inventario con gli effetti ambientali

Fase 3: valutazione degli impatti


ISO 14044

Fase 3: valutazione degli impatti



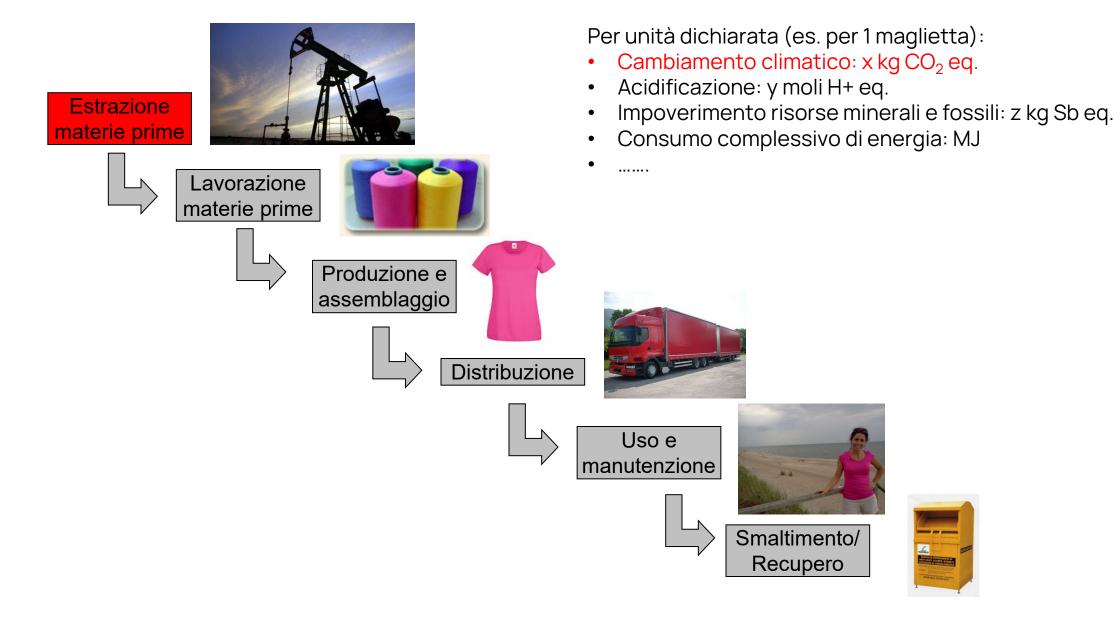
LCA: la struttura

N.B.: Le 4 fasi non vanno considerate come blocchi separati, ma parte di un processo iterativo

ISO 14044

Sphera Advancing Operational Excellence

Most relevant life cycle stages


CPT - Li-ion battery									
Impact category	Raw Material acquisition	Production of the main product	Product distribution	Use stage	End-of-Life				
Climate Change (fossil) [kg CO2 eq.]	82%	8%	0%	7%	3%				
Resource use, energy carriers [MJ]	77%	11%	0%	9%	3%				
Resource use, mineral and metals [kg Sb eq.]	87%	0%	0%	0%	13%				
Respiratory inorganics [kg PM2.5 eq.]	79%	4%	0%	3%	15%				

ICT - Li-ion battery									
Impact category	Raw Material acquisition	Production of the main product	Product distribution	Use stage	End-of-Life				
Climate Change (fossil) [kg CO2 eq.]	65%	15%	0%	11%	9%				
Resource use, energy carriers [MJ]	60%	18%	0%	12%	10%				
Resource use, mineral and metals [kg Sb eq.]	81%	1%	0%	0%	18%				
Respiratory inorganics [kg PM2.5 eq.]	69%	5%	0%	3%	23%				

ICT - NiMH battery					
Impact category	Raw Material acquisition	Production of the main product	Product distribution	Use stage	End-of-Life
Acidification terrestrial & freshwater [Mole of H+ eq.]	68%	2%	0%	1%	28%
Climate Change (fossil) [kg CO2 eq.]	63%	3%	0%	12%	22%
Resource use, energy carriers [MJ]	59%	4%	0%	15%	21%
Resource use, mineral and metals [kg Sb eq.]	67%	2%	0%	0%	31%
Respiratory inorganics [kg PM2.5 eq.]	70%	2%	0%	2%	27%

e-mobility Li-ion battery										
Impact category	Raw Material acquisition	Production of the main product	Product distribution	Use stage	End-of-Life					
Climate Change (fossil) [kg CO2 eq.]	45%	26%	0%	17%	12%					
Resource use, energy carriers [MJ]	43%	29%	0%	18%	10%					
Resource use, mineral and metals [kg Sb eq.]	65%	1%	0%	0%	34%					
Respiratory inorganics [kg PM2.5 eq.]	66%	13%	0%	6%	41%					

Esempio di analisi dei contributi

In accordo con quanto stabilito nella fase di definizione dell'obiettivo e del campo di applicazione SI RIASSUMONO E SI DISCUTONO I RISULTATI OTTENUTI NELLE FASI PRECEDENTI (LCI E LCIA) al fine di:

- trarre conclusioni
- spiegare le limitazioni
- fornire raccomandazioni

- quali sono le fasi critiche del ciclo di vita?
- esistono parti del sistema da modificare?
- bisogna riprogettare un'intera fase?
- quale tra le diverse alternative è la migliore?

910

Bontà di uno studio di LCA

The International Journal of Life Cycle Assessment (2024) 29:909–911 https://doi.org/10.1007/s11367-024-02291-0

LETTER TO THE EDITOR

Requirements for comparative life cycle assessment studies for single-use and reusable packaging and products: recommendation for decision and policy-makers

Dario Cottafava¹ · Gaia Brussa² · Giulia Cavenago² · Daniele Cespi³ · Lucia Rigamonti² · Alba Bala⁴ · Joana Beigbeder⁵ · Paul Refalo⁶ · Ilija Sazdovski⁴

https://doi.org/10.1007/s11367-024-02291-0 Link The International Journal of Life Cycle Assessment (2024) 29:909–911

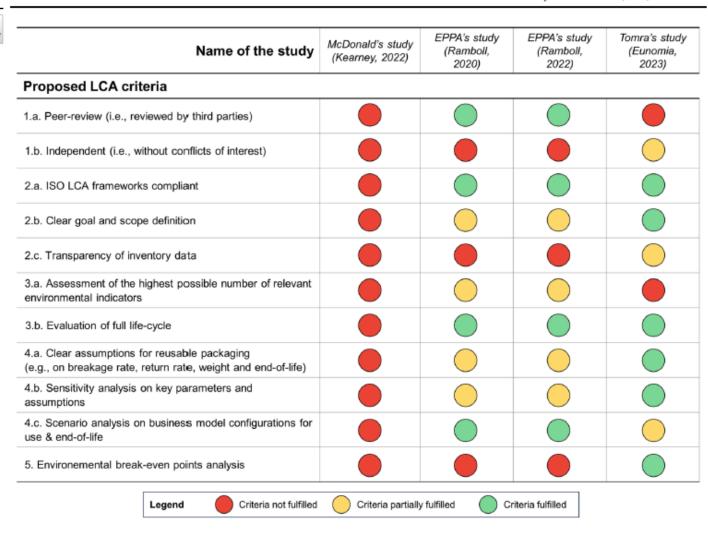


Fig. 1 Visual representation of the analysis of four life cycle assessment studies on single-use and reusable systems for dine-in and food take-away sector. The quality of the studies was assessed in light of the criteria and requirements for robust and methodologically sound analyses

Conclusioni

- ✓ LCA: metodologia riconosciuta dagli standard ISO per la valutazione dei potenziali impatti ambientali
- ✓ Applicazione a singolo sistema: per individuare le fasi più critiche e fornire delle indicazioni per ridurne l'impatto ambientale
- ✓ Utilizzo comparativo: confrontare per una stessa funzione diverse opzioni per individuare la migliore dal punto di vista ambientale
- ✓ Tutti i dati e le assunzioni effettuate devono essere ben dichiarati (trasparenza)
- ✓ I dati devono essere di qualità
- ✓ Nel prendere una decisione, lo studio di LCA è uno degli studi da considerare (non il solo)

Prof.ssa Lucia Rigamonti lucia.rigamonti@polimi.it https://www.aware.polimi.it/

lcanetwork@polimi.it
http://linkedin.com/company/polimi-lca-network

Domande?